400-826-3191

>
>
行业新闻

行业新闻

乳化液需不需要进行处理?
$info.title
    乳化液是一种含矿物油的半合成加工液产品,它具有当前最先进的配方技术,特别适用于大规模的铝铸件生产厂商。当用我们的产品更换其他普通的可溶性切削油时,应将整个冷却循环系统彻底的进行杀菌清洗。     乳化液是一种高性能的半合成金属加工液,特别适用于铝金属及其合金的加工,但不适用于含铅的材料,比如一些黄铜和锡类金属。不受渗漏油、混入油的影响,乳化液采用不含氯的特制配方,专门用于解决铝金属及其合金加工时出现的种种问题,比如:切屑粘结、刀具磨损、工件表面精度差以及表面受到污染等。它能应用于包括绞孔在内的所有操作。乳化液亦能有效地防止加工工件生锈或受到化学腐蚀,还能有效的防止细菌侵蚀感染简单来说是某种溶质不溶于溶剂所构成的混合物。     乳化液中含有的脂肪油和不饱和脂肪酸很容易被微生物侵蚀。乳化液中经常遇到的微生物有细菌、霉菌和藻类三类,这三类微生物对乳化㳖的稳定性有不利影响。许多乳化液都含有杀菌剂,但其添加量都受到油溶解度的限制。当配制成乳化液时,杀菌剂的浓度进一步降低,因而降低了它的杀菌作用。乳化液受到微生物的侵蚀后,乳化液中的不饱和脂肪酸等化合物被微生物所分解,破坏了乳化液的平衡,产生析油、析皂,乳化液的酸值增大,引起乳化液腐败变质。     乳化液把油的润滑性和防锈性与水的较好的冷却性结合起来,同时具备较好的润滑冷却性,因而对于有大量热生成的高速低负荷的金属切削加工十分有效。与油基切削液相比,乳化液的优点在于较大的散热性,较好的清洗性,以及用水稀释使用而带来的经济性,此外,也有利于操作现场的卫生和安全。实际上除加工难度特别大的材料外,乳化液几乎可以用于所有的轻、中等负荷的切削加工及大部分重负荷加工,乳化液还可用于除螺纹磨削、槽沟磨削等复杂磨削外的所有磨削加工。乳化液的缺点是细菌、霉菌容易繁殖,使乳化液中的有效成分产生化学分解而发臭、变质,所以一般都应加入毒性小的有机杀菌剂。     因此,乳化液废水需要得到处理才能加以排放,美纳环保对此废水处理有一定的经验,欢迎大家前来咨询!    
如何解决制药废水预处理问题
$info.title
    随着社会经济的飞速发展,近年来制药行业不断壮大,已取得了重大成就,但随之产生的制药工业废水成为困扰企业和政府的巨大难题。制药工业主要以化学合成类制药、生物制药和中药类制药为主,生产具有产品种类多、过程复杂、生产规模各异等特点。化制药废水可大致分为四类,生产过程中废弃的液、母液等;回收时的残留液体包括溶剂、前提液、副产品等;辅助过程排水如冷却水等;设备和地面等冲洗废水;生活污水。       制药废水的特点主要表现为水质各组分比例不稳定、成分复杂、有毒有害污染物浓度高、色度高、可生化性差及难降解物含量高等,此外水质和水量也非常不稳定。所以如何处理制药废水,使之达到《污水综合排放标准》的要求,是环境保护和企业效益的双重目标。       不同制药企业由于原料、工艺、废水量、处理程度不同,所选择的处理方法也不尽相同。根据各方法原理,一般归纳为物理法、化学法、生物法。在制药废水处理过程中,采用生物法处理后的废水不能直接排放,通常先采用物理法、化学法进行预处理,改善其可生化性,降低毒性,然后继续进行生物法处理,废水才能达到排放要求。       针对制药废水的高COD、高氮高磷、高盐份、色度深、成分复杂和可生化性差等特点,为此经常会涉及到微电解芬顿系统进行预处理,通过对大分子有机物的降解和破坏,从而达到降低其毒性及提高可生化性的目的,然后联合其它污水处理工艺,将废水处理到本区内污水处理厂达标要求后排入当地污水处理厂,后续由污水处理厂再行处理。       1.微电解反应       铁碳微电解的反应机理是将铁碳填料浸没在酸性废水中时,由于铁和炭之间的电极电位差(0.9~17V),废水中会形成无数个微原电池。这些微电池是以电位低的铁成为阳极,电位高的炭做阴极,在含有酸性电解质的水溶液中发生电化学反应。反应过程中产生的大量初生态的Fe2+和新生态的[•H],它们具有极高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环等作用。提高废水的可生化性。反应过程中阴极生成OH,提高处理后废水PH值。       2.芬顿反应       废水经前面铁碳微电解的处理后,部分有机污染物已被氧化去除,剩余的部分有机物的结构也已经发生了变化,有利于进一步的氧化处理。结合对此类废水的处理经验,废水可以通过加入一定量的双氧水与水中的亚铁、催化剂离子形成自由基强氧化剂,可去除废水中绝大多数的有机物。       3.中和沉淀       通过将微电解芬顿系统的酸性出水pH值调节为8左右,同时加入混凝剂,实现废水中悬浮物等沉淀的去除。处理化工废水时,中和沉淀过程能够独立去除废水中污染物也能作为中间工程提高废水处理效果。    
工业废盐资源化处置现状及分析
$info.title
    本文阐述了工业废盐的来源、分类及性质,当前工业废盐所面临的问题,重点介绍了对有机物含量不同工业废盐的处置技术,高含量有机物的工业废盐通过高温氧化法去除有机物,低含量有机物的工业废盐通过盐洗法去除有机物,有机物去除后的工业废盐然后借助三元体系相图分析实现盐分离,从而实现工业废盐资源化,同时,根据当前现状,提出资源化处置的思路和进展,并列举了工业废盐资源化处置项目的处置思路,分析了工业废盐资源化处置的前景和意义。       一、工业废盐概括       01 工业废盐的来源、分类及性质       工业废盐来自工业生产,高盐废水处理、农药生产等均会产生大量的工业废盐,主要是指无机盐为主要成分的固体废弃物,废盐年产量超过2.0×107t ,主要分为氯化钠、硫酸钠两大类。       按来自行业划分农药行业(30%)、医药(10%)、精细化工(15%)、印染等(45%),于江苏省而言,含盐废物主要来源于染料中间体(HW12)、医药中间体(HW02)、农药中间体(HW04)、煤化工(HW11)及湿法冶金(HW48)。       根据工业废盐的成分,可将工业废盐分为单一盐与混合盐。单一盐为单一组分的盐;混合盐是指两种及两种以上组分的盐,工业废盐中的有机物含量与产生行业有关。江苏调研显示,工业园区暂存的废盐中,混盐占80%,剩下的20% 为单盐。       工业废盐具有成分复杂、来源广泛、毒性大等特点,虽在危废名录中并未单独列出,但 2016 年《国家危险废物名录》明确将化学合成原料药生产过程中产生的蒸馏及反应残余物、化学合成原料药生产过程中产生的废母液及反应基废物划定为危险废物。因此工业废盐不仅破坏生态环境,祸及人畜,一旦污盐中可溶性盐及杂质严重引起土壤盐化,危及周边农、林、牧业的生存与发展,甚至对周边水源和地下水造成严重污染,危害极大。       02 工业废盐处置面临问题       针对工业废盐的性质,因此其需要得到妥善处置,在国外,这种副产废盐大多采用无害化处理后直接将盐向海洋倾倒,这种处理方式有很大的局限性,一是企业必须临海或离海岸不远,二是副产污盐中不含有害的有机和无机杂质。事实上,化工生产中副产的污盐依据产品的不同,污盐中的成分也不同,有时还有较大的差别,使副产污盐的处理和利用加大了难度。       国内工业废盐的处置技术有:填埋法、高温氧化法、盐洗法等。目前填埋法是我国工业废杂盐的主要处置手段,但废盐填埋存在以下几个问题:       (1)投资大。占地多依据危险废物填埋污染控制标准的相关规定,水溶性盐总量含量≥ 10% 的废物是不能进入柔性填埋场,因此废盐必须进入刚性填埋场。对于同等规模填埋,刚性填埋场投资比柔性填埋场大,占地面积也相对大。       (2)刚性填埋场国内少。目前国内大部分填埋场是柔性填埋性,废盐填埋受限,企业大部分废盐也无填埋出路。       (3)填埋成本高。目前废盐的填埋吨成本高达 4000 元以上,企业难以承受。综上所述,工业废盐不易填埋填埋,建议资源化。       二、工业废盐资源化处理技术       根据废盐来源可知,工业废盐中含有毒性大的有机物,无论对于单一盐还是混合盐,要实现废盐资源化,必须先将废盐中的有机物去除,然后再分盐。       01 去有机物       根据废盐中的有机物含量多少,其处置技术常用的分为两类:       (1)高温氧化法       该法针对废盐中有机物含量高,将废盐高温处理,使废盐中的有机杂质在高温下氧化成 CO2、CO、H2O 气体,从而达到去除有机杂质的目的,此法的关键在于分解氧化燃烧设备的选择。       (2)盐洗法       盐洗法对饱和副产品溶液进行清洗,将副产品中的有机物等物质溶解于清洗溶液中,从而达到净化副产品的目的。该法比较适用于杂质含量少且杂质成分单一的副产废盐。       02 混合盐分离       去除有机物得到的混合盐,仍是多种成分的无机物,例如硫酸钠和氯化钠、氯化钾和氯化钠、氯化钾,需要进一步处理得到单一盐,无机盐的分离需要借助三元体系相图分析,可分析在整个蒸发过程中,物料含量间的关系可由杠杆规则进行确定。       史许娜通过将脂肪醇/盐/水双水相体系应用于氯化钾氯化铵混合溶液的分离,开发了一种分离氯化钾、氯化铵混合溶液的新方法,即正丙醇—氯化钾—氯化铵—水双水相体系。该方法成本低且溶剂易于回收。       三、工业废盐资源化思路       目前国内尚无工业废盐资源化的成熟技术,但在废盐资源化已开展相关工作。如推动废盐处置技术规范、新建废盐处置企业项目等,后期要想实现工业废盐的资源化处置,技术的突破点在于以下方面。       01 产品有依据       目前工业废盐资源化缺乏标准的支撑,后期需要标准支撑和政策引导。       02 工艺稳定性好       盐的熔点和沸点低,例如:氯化钠的熔点 801℃,需要解决运行过程设备的黏性和腐蚀性问题。       03 处置成本合理       需要合理控制运行成本,降低废盐的处置费用,以便市场推广和应用。       四、工业废盐资源化进展       积极推动废盐处置技术规范,并开展工业废盐资源化项目的应用探索,如某新建工业废盐资源化项目,其工业废盐原料来自某化工园区,有两类工业废盐,采用不同的工艺。       TOC ≤ 3600ppm 的工业废盐,工艺方案为原料污盐与洗涤液通过逆流水洗再生,湿盐经离心、干燥后得产品盐,包含污盐的贮存、污盐再生单元、盐水蒸发单元、废水处理系统。       洗涤液与污盐按照比例进行充分混合,并在外加场的作用下洗涤;盐水蒸发单元从污盐再生工序来的高盐污水,通过蒸发结晶,将物料中的盐结晶分离出来,返回污盐再生工序继续再生,产生高 COD 废水送入污水处理工序。       TOC > 3600ppm 的工业废盐,采用焚烧炉进行直接焚烧,去除有机物,包含固体进料系统、焚烧系统、余热回收系统、烟气净化系统。       01 焚烧系统       (1)回转窑:控制回转窑烟气温度 750℃,出口烟气温度 400℃;回转窑内固废经 750℃高温氧化处理后由窑尾排下。       (2)二燃室:二次燃烧炉温度控制在 1100℃以上,烟气停留时间为 2s 以上,能够充分分解有害的臭气和多氯化合物,抑制二噁英的生成。       (3)助燃系统:通过控制天然气喷入量实现系统缓慢升温至正常工况,维持系统正常运行。       (4)供风系统:一次风由窑尾补入,与焚烧烟气混合后进入回转窑;二次风由二次室补入。       02 余热锅炉       余热锅炉的设计和运行压力选为1.6MPa(表压),产生204℃的蒸汽。       03 烟气净化系统       (1)SNCR 脱硝:在 1000℃下,烟气与尿素发生还原反应。       (2)半干式急冷吸收塔:烟气温度在1.0s 内降到 200℃以下。       (3)干式脱酸装置:主要设备包括氧化钙储槽、活性炭粉储槽、罗茨高压风机和文丘里反应器。         (4)布袋除尘系统:进口烟气温度 180℃,去除粉尘粒径在 0.05μm 以上,除尘效率可达 99%以上。       (5)活性炭吸附塔:进口烟气温度 160℃。       (6)引风机:净化后烟气引至碱液喷淋吸收塔内进行进一步净化。       (7)碱液喷淋洗涤系统:进口烟气温度 150℃,进口烟气温度 80℃。       (8)净化后的烟气通过烟囱排入大气,满足《危险废物焚烧污染控制标准》。       五、工业废盐资源化处置前景       01 工业无机盐的来源       工业无机盐主要来自地球上的矿石开采,如工业级硫酸钠以天然芒硝矿、盐湖卤水、钙芒硝矿、海盐苦卤为原料。       02 工业废盐资源化后的去向       当工业废盐通过技术实现了资源化,达到产品标准,可以得到应用,如分离提纯得到工业级的氯化钠,可以应用于氯碱行业中,氯碱行业是以氯化钠为原料,通过电解方法制取氢气、氯气和烧碱。       03 工业废盐资源化的意义       工业废盐实现资源化的意义是大的,主要为两个方面,一是可以解决填埋占地,避免污染;二是钠钾实现资源化,可以减少矿物开采。       六、结 论       综合考虑,工业废盐资源化可行方案建议:       有机物含量少且单一的废盐:盐洗 + 除杂(除杂质与分盐)+ 结晶,得到符合国家产品标准的盐;       对于有机物含量高、规模大且混合盐:运行稳定的高温氧化 + 除杂(除杂质与分盐)+ 结晶,得到符合国家产品标准的盐。       同时,随着工业废盐资源化项目的不断投入,现有的工艺、设备问题将不断取得改进和完善,未来对工业废盐必将形成成熟且稳定的资源化利用技术。(来源:北极星水处理网//《环境与发展》)    
工业废水处理芬顿工艺
$info.title
  在我国工业生产中,水资源一直以来都是最重要的一个组成部分,但是很多工业生产所产生的废水不仅含有大量的有毒有害物质,并且在处理时降解难度相对较大。如果直接将其排放到自然环境中,不仅会造成我国土壤、河流与大气的污染,甚至会导致整个生态平衡出现问题,与我国可持续发展战略背道而驰,这对于我国社会以后的发展十分不利。为此我们必须对工业废水进行有效处理,选择合适的方法以及处理技术,以提高工业废水处理的效果。   1、影响芬顿反应的因素   1.1 有机物     由于不同工业废水中所含有的有机物是不同的,为此,即使全部选择芬顿试剂作为污水处理的主要工艺,其使用效果也会出现不同的状态。原因之一是不同的有机物对于不同芬顿试剂的使用量所产出的反应效果不同。原因之二是由于工业废水中这些有机物不完全相同,也就导致芬顿试剂的使用效果不同,在反应的过程中,分子会出现脱氢情况,导致C—C断链。而如果选择处理的工业废水,其中所含有的高分子为水溶性高分子或者是乙烯化合物,在实际反应时,氢基自由基就会使C=C键断链,这两种不同的反应效果,也导致芬顿工艺在实际使用时所得到的结果是不同的。这一反应方式主要是为了将芬顿工艺应用在处理有毒性的工业废水中,让废水中的生物毒性整体降低,也提高了废水的可生化性。   1.2 温度因素     在应用芬顿工艺时,温度也是重要的影响因素之一,由于温度的改变,芬顿反应的反应速率以及反应效果也会随之改变。温度的不断升高会促使芬顿反应的温度逐步加快,随着温度的整体提高,得到的氧化效果可以提高废水内CODcr的去除率,必须要根据实际情况选择最合适的温度,保证处理效果达到最优解。   2、工业废水处理中芬顿工艺应用途径   2.1 利用芬顿工艺处理焦化废水     在工业生产中,焦化废水也是最常见的废水之一。在焦化废水中也含有很多生物毒性物质,这些含有生物毒性的物质,自身的抑制性较高,如果直接将其排放到自然环境中会导致生态平衡遭受到破坏。以往在处理焦化废水时会选择生化处理,但是生化处理的废水难以达到我国工业废水排放标准。在处理焦化废水时,如果选择其他处理工艺来对其进行污水处理,不仅难以达到我国的可排放标准,同时也会消耗过多的经济资源。目前,通过对焦化废水进行研究发现,如果选择活性炭处理工艺对焦化废水自行处理,虽然也可以保证焦化废水达到我国污水排放标准,但是需要认识到活性炭工艺所消耗的经济资金过大,如果在工业处理焦化废水时,大规模的使用该工艺会导致整体成本较高,很多工业废水处理厂难以承受该经济消耗,这对于经济发展有着消极的影响。但是利用芬顿工艺则可以有效地处理焦化废水中难以降解的有机物,不仅能够降低经济成本,同时也能够在焦化废水处理时达到良好的效果,满足我国的排放标准。   2.2 利用芬顿工艺处理垃圾渗滤液     在工业生产中产生垃圾渗滤液也是非常常见的一种工业废水,不能够将其直接排放,也不能在经历简单处理后对其进行排放。在垃圾渗滤液中,其中最明显的就是所含有的氨氮浓度较高,这也促使整个工业废水中的微生物量严重失调,如果将其直接排放到河水中就会导致自然环境遭受到非常严重的破坏。然而,在处理垃圾渗滤液时,如果选用的是普通生化处理工艺,不仅仅在处理时相对麻烦,而且过多的步骤也会提高失误率,让垃圾滤液的处理效果不断下降,在经过普通生化工艺处理之后,其所得到的效果也一般。然而利用芬顿工艺则可以有效地改变这一问题。分段工艺在处理垃圾滤液时,可以有效地与垃圾滤液中的氨氮元素进行反应,保证其在处理之后可以让水质达到我国工业污水排放的二级标准。对于一些排放标准高的地区,可以在垃圾滤液经过芬顿工艺处理之后,利用生化工艺继续处理。当垃圾渗滤液达到可生化性时,利用生化处理对垃圾渗滤液进行第二次处理,让垃圾渗滤液能够达到我国工业废水的排放标准,同时也能够降低经济消耗,提高污水处理厂的经济效益。   2.3 利用芬顿工艺处理酚类物质     与以上两种工业废水不同,酚类物质最重要的特点就是毒性较高,同时也是最难降解的一种工业废水。以往在处理酚类物质时,都是我国工业污水处理厂最头疼的问题,然而利用芬顿工艺可以有效地将其处理。根据实验表明,在处理苯酚时利用芬顿工艺,可以快速地将其分解,由于酚类废水中含有大量的甲酚、苯酚等不同种类的酚类物质,这些酚类物质其自身难以降解,有着非常强的稳定性。然而利用芬顿工艺,在室温保持在合理情况时,要将酚类废水溶液的pH控制在3~6之间,可以利用氧化铁进行催化。在处理酚类废水时,使用芬顿工艺的频率较高,其最重要的原因之一就是应用芬顿工艺可以有效地减少含酚物质中的生物毒性,同时能够提高含酚废水的可降解性。对于工业废水处理而言有着非常积极的影响,同时也能够提高工业废水处理企业的经济效益,符合我国可持续发展。   2.4 利用芬顿工艺处理印染废水     染印废水,其最明显的特征就是废水中的色素含量较高,也就是说废水多呈现不同的颜色,并且不能直接排放,并且含有大量的盐,和其他种类的工业废水相比,染印废水中的含盐量是最大的,这一特征也导致染印废水的生化性不强。在处理染印废水时能够发现,由于其自身的需氧量浓度过高,难以快速处理,而芬顿工艺则可将这些有机物逐渐分解成为容易生物降解的物质,这对于废水处理而言十分重要,同时有着非常积极的意义。促使染料的整体色度降低,这也是芬顿试剂被应用在印染废水处理的原因之一。在处理染印水时,不仅可以利用普通的芬顿工艺来进行污水处理,也可以由芬顿工艺衍生出的其他工艺手段,其主要原因是都含有较高氧化性,比如在当前很多工业废水处理企业会使用到的微电解氧化工艺,这一工艺也能够快速对染印废水进行处理。在印染废水中存在降解难度最大的染料就是蒽醌染料,而利用微电解混凝-Fenton试剂催化氧化工艺,则可以有效地将蒽醌染料废水中难以降解的有机物进行降解。当蒽醌染整废水中所含有的CODcr的含量为700~800mg/L时,BOD5的含量为80~100mg/L,色度为450~550倍时;要求在经过处理之后的出水的CODc≤50mg/L,去除率需要达到93%~94%,而其中的出水率为BOD5≤10mg/L,去除率应该在90%~95%,出水色度的标准需要在≤20倍,而去除率则需要达到95%~96%,反应时间30min。   3、结语     在工业化进程不断加快的今天我们必须要认识到,工业废水会严重地污染到我国的生态平衡,甚至导致我国的经济下滑。但是通过当前应用芬顿工艺发现,还需要对这一技术进行深入的研究,让这一技术可以获取更多的经济效益,更好地在我国工业废水处理行业进行推广和应用,帮助我国建设环境友好型社会。(来源:中国污水处理网)    
“吸附-电沉积”技术让电镀废水变废为宝
$info.title
    电镀行业属于重度污染行业,产生的电镀废水中含有高浓度重金属离子,处理成本高,稳定达标难度大。电镀废水中的重金属铜和镍具有较高回收价值,但利用传统的碱沉淀法进行处理,不仅会产生大量污泥,而且还会带来处理成本高、资源难回收等难题。现有的膜浓缩回槽、吸附回收盐等技术都因杂质问题难以推广应用或者影响回收效益。因此,如何高效回收铜和镍就成为了当前电镀废水处理一个亟待突破的技术瓶颈。       针对上述问题,清华大学和深圳大学等单位承担的水专项武进项目“工业聚集区污染控制与尾水水质提升技术集成与应用”课题研发出高效回收电镀废水中的镍和铜离子的吸附-再生技术,该技术集成功能树脂吸附和电化学技术,优选出高效的吸附材料,形成高效回收废水中的铜和镍的吸附工艺,通过电化学沉积实现吸附再生液中镍和铜的回收,形成了基于吸附-电化学回收镍和铜的“树脂吸附-电化学沉积”关键技术(以下简称:吸附-电沉积技术),实现了镍和铜离子的高效富集回收,得到高纯度镍板(纯度>99%)和铜板(纯度>95%)。       传统的碱沉淀法处理每吨镍废水和铜废水的成本就分别高达52.9元,29.5元,且重金属资源无法回收。以“吸附-电沉积技术”为核心建造的电镀废水处理工程污水中重金属铜和镍的回收率可高达90%以上。当含镍原水的镍初始浓度为600mg/L和含铜原水的铜浓度为1000mg/L时,处理每立方米原水的吸附和电沉积直接成本分别为23.5元和23.6元。高纯度铜板和镍板目前的市场价为5万/吨和10万/吨,以此核算,一个处理能力为100吨/天的含镍和含铜废水资源化装置,每日处理铜和镍的净收益可达2510和1920元。       “吸附-电沉积技术”不仅可以高效回收重金属资源,还具有技术运营成本低、经济效益高等特点,具有很高的推广应用价值。该技术现已应用于武进洛阳第二电镀有限公司,处理废水规模为100吨/天。“吸附-电沉积技术”可广泛应用于电镀行业,推动电镀废水资源化的高效发展,真正做到电镀废水变废为宝。(来源:北极星水处理网//走进水专项)    
上一页
1
2
...
60