400-826-3191

>
新闻资讯

新闻资讯

制药废水的几种处理方法比较
$info.title
在日常生产生活中会产生各种废水,其中制药废水由于其所含成分复杂,因此是比较难处理的一种废水,同时随着我国制药技术的发展,制药废水也逐渐成为重要污染源之一,如不及时处理将会造成严重的环境危害。下面就简单介绍一下几种常见的医药废水处理方法。
印染废水对环境的特性、危害及治理措施
$info.title
纺织印染属于生产制造产业的一种,尤其是生产化学纤维、尼龙等物质需要进行染色等过程,故这些生产技术可能会导致水体的呈色较深、pH明显增加的情况,进而影响了当地水体的质量。由此可见,技术人员应当总结工厂废水排出模式,了解废水处理方法和处理要点,再总结不同废水的处理要求,可在逐步处理、治理的过程中消除有机污染物对水体的污染。   一、印染废水的特点   印染废水的主要有多种有机物、高分子聚合物、无机盐以及重金属组成,其原因是纺织生产中需要应用不同颜色燃料和助剂材料,故生产期间会产生印染废水污染。统计显示,大部分印染废水呈强碱性,并且水体中有大量的化学需氧(COD)物质,所以此类水体无法进行再次利用。在此期间,水体还会受到当地环境、纤维组成种类的影响,尤其是高纤维材料的污染物更多。其中,染料、助剂的有效使用,可增加燃料的呈色效果,但也会对环境造成一定影响,造成这一现象的成因是使用化学药品的成分相对复杂,所以会增加水体中的混合污染。受各类新型材料、新型染料的开发与利用,需要广泛将各类材料投入至实际生产过程,但也会致使水体中大量有毒的、难以被分解的物质。因此,务必要统计印染废水污染的危害及诱发原因,探讨废水治理的难点及关键要素,再要求相关人员设立可行性控制方案,做好废水污染源头污染物种类的分析及统计工作,有利于提高污染治理的合理性。   二、印染废水的危害分析   1、染料污染   颜色鲜艳的燃料中含有大量可溶性盐和有机物,相关统计显示,染料加工处理过程由至少15%的染料被直接排入水体,部分染料中还含有大量的重金属,一旦此类物质被排放到了水体环境中,会致使水体呈富氧化的状态。在此过程中,部分染料还具有较好的吸光效果,所以会直接影响水体的通透性,致使水体中的微生物、动物的体征发生变化,极大可能会导致水体生物生长不良的现象。若人体使用了污染水体的动植物,还会危害人体的肾脏组织,不利于人体健康。因此,技术人员应当控制染料的排放需求,尤其是要设定控制计划,消除酞青铜盐染料对水体的污染影响。   2、重金属污染   部分染料中含有诸多重金属物质,主要包括Pb、Hg、Cr以及盐类物质,此类物质无法经过自然降解处理,故会直接污染水体,也危害了生物链的稳定性。相关统计显示,含汞、铬离子的盐类化合物会影响人体肾脏、脾脏、胃肠的基础功能,并且很多重金属染料在生产中较为常见。其中,铬金属物质在印染生产尤为常见,且部分材料中数所消耗的铬元素的含量较大,可能会导致工业污染现象。因此,为降低水体中的重金属物质,做好水资源的循环利用,可提升废水治理的合理性和有效性。   3、其他物质污染   含有树脂的有机物、防水剂、柔软剂材料均会导致水体污染现象,并且此类物质的治理难度相对较高,且传统治理措施的效果较差,可能会加剧当地水体的污染情况。其中,常见酸性物质、可溶性盐过量时,也会导致水体酸碱度发生改变,影响了水体的质量。统计显示,铵、硫离子、磷离子以及尿素物质已被广泛应用至印染生产操作过程中,而过量的碱性离子不仅会导致水体的酸碱度偏高,还会导致水体富氧化,最为明显的消极影响就是水体富氧化,其表面有一层油脂,限制了水底生物的正常呼吸。传统印染废水治理方式多采用物理方法、化学药剂处理的模式进行干预,但“末端治理”措施无法高效解决水体中的有机物和无机物,其原因是单一的治理方式仅能吸收指定的污染物,但对于其他污染物的吸收效果较差,所以无法全面消除污染对环境的影响。因此,为控制印染废水对水体、自然护环境的污染,技术人员应当设立低能耗的处理模式,在提高废水处理效果的同时提高综合管理效率。通过落实监控、生产控制、技术优化等控制模式,重视对现有技术进行更新,有利于消除印染操作过程的生态污染。   三、印染废水的治理举措   1、原料的选择与优化   为了从源头控制印染废水污染,技术人员应当从选料及染料回收利用两方面进行优化,再根据印染的流程确立项目管理方案,提高污水治理的有效性,具体应注意以下两方面的治理要点:   第一,原料选择期间,应充分确保染料的安全、环保功能,探讨染料、助剂的成本需求,进料不使用有毒、难以被正常降解的物质,可方便水体中污染物实现自净。在此期间,应当使用自动化监控装置评价原料中的重金属物质含量,评价铬、镍、汞等金属离子的浓度指标,并给予规范性记录。化学药剂使用时,应分析其使用、排放的规范性,采用高性能的管制材料装置进行印染操作,可控制不需要的材料能耗情况,进而控制次品、重污染半成品的浪费污染,也能在控制染品重修几率。其中,选用低污染的化学浆料也可实践“减废”的目标,具体可应用Na2SO3溶液替代NaS溶液,氧化剂选用期间,可选用无污染的过氧化氢溶液替代带有Cr离子的盐溶液,不仅能够加剧反应速率,还能控制各类污染的排放。此外,高效应用PVA浆料材料替代含有淀粉物质的印染药剂,可方便后期废水的处理操作,其原因是PVA是一种可被分解的材料。因此,技术人员应利用淀粉酶物质替代氢氧化钠溶液,能够全面提高退浆效果。同时,该方法也可避免传统操作中氢氧化钠溶液浓度过高而降低退浆效率的现象。因此,为提升后期废水的处理质量,降低印染终端处理的难度,技术需要重视在生产源头进行材料选择工作,尤其是要采用无污染、环保效果较好的材料进行替代。   第二,原料回收应用期间,应当注意所使用化学药剂的处理方式,原因是部分化学浆料使用期间使用传统生化处理的效率较差,所以应当尽可能控制染料流失现象的废弃物排放现象,侧重在生产期间进行污水治理,可降低末端废水治理不全面的负面影响。首先,染料回收期间,可应用超滤方式进行还原控制,尤其是强化对疏水性染料的分散处理,可控制废水回收期间高污染、原材料消耗过量的不利影响。其次,氢氧化钠废液回收控制期间,应控制原材料的应用支出,可控制水体pH过大的现象,也可降低处理期间的能耗。再者,重金属污染回收期间,可考虑使用物理吸附法吸附方式解决染料中的Cr、Hg等物质,待处理完毕后,应当加强对水体的清洁处理,降低水体污染现象。最后,漂洗过程中,应当采用专用混凝脱色剂对废液进行催化处理,可方便染色漂洗中废水排放的污染现象,有利于实践节约用水的目标。   2、重视工艺单元的治理控制   重视各工艺环节的治理模式,尤其是要制定完善的控制计划,尽量选用卧室水洗模式进行作业,再联合相应化学剂量装置,可提高整体治理控制的合理性。因此,技术人员可选用自动化检测、安装装置进行控制,总结各工艺操作期间所使用染化材料、助剂材料的使用剂量,可及时监控出各工艺的污水排放是否达到既定要求。在此期间,废水处理应结合实际生产需求分析工艺顺序、水质特点状态,联合必要的分流控制方法监控水质生态,检测出水体中重金属、有机物及无机物的含量。通过在分流控制中巩固水质,可减少印染废水的成本支出。值得注意的是,应采用信息化技术监控管道、阀门的水流状态,控制流入污水处理池的水流量,提高污水处理质量。因此,技术人员可应用臭氧环处理技术与印染污水处理环节,其原因是臭氧的氧化性较好,可催化部分有机物的物理性质发生变化,可降低致使成品的着色效果。同时,该技术脱色效果较好,操作运行期间所使用的工艺模式相对简单,能够控制废水处理期间的二次污染现象。例如在处理印染中废水中的重金属离子和难以分解的有机物时,臭氧的强氧化作用可帮助此类物质实现离解,从而降低水体中化学厌氧菌和化学需氧菌指标。   四、结束语   综上所述,印染废水不仅对当地生态有严重危害,还会导致水体富氧化,出现大规模污染现象,影响了生物族群稳定性。因此,技术人员应从印染源头处理各类污染物质,并强化污染物种类的监测,选用合适的处理方式,进而提高印染废水的处理效率及质量。(来源:中国污水处理工程网)    
难降解有机废水处理高级氧化技术
$info.title
当前,主流的污水处理方法是生物处理方法,对可生化性差、相对分子质量从几千到几万的有机污染物去除效果不佳。高级氧化法可通过氧化提高难降解污染物的可生化性,甚至可直接矿化有机污染物,同时还在环境类激素等微量有害化学物质的处理方面具有很大的优势,能够使绝大部分有机物完全矿化或分解为小分子。   高级氧化技术(AOP)始于20世纪80年代,由Glaze等提出。近30年来,高级氧化技术在废水处理领域的应用范围甚广,包括净化饮用水、工业废水、地下水和垃圾填埋场渗滤液等。最显著的特点是氧化剂产生自由基氧化降解有机物,反应生成的有机自由基可参与·OH的反应,也可进一步生成有机过氧化自由基,再进一步发生氧化分解反应直至将有机物完全矿化,从而达到氧化降解有机物的目的。从工艺原理来看,高级氧化技术主要包括化学氧化法、光催化氧化法、臭氧氧化法、湿式氧化法和超临界水氧化法等。   1、化学氧化法   化学氧化法主要包括Fenton法和类Fenton法,Fenton试剂由法国科学家FentonHJ在1894年首次发现,Fe2+和H2O2在酸性反应体系中可高效氧化酒石酸。进一步研究表明,典型的Fenton体系主要是由Fe2+催化H2O2产生强氧化性的·OH,从而降解水中的难降解有机物。   研究发现,将紫外光和氧气加入Fenton体系中,可以提高单位氧化剂的氧化能力,从而减少H2O2的用量。因为反应机理与传统Fenton法一致,故被称为“类Fenton法”。   Fenton法和类Fenton法的优点十分明显:氧化能力强、设备要求简单、反应条件温和,既可以作为单独处理技术应用,也可以与其他技术联用。但是该方法的药剂成本较高、氧化剂H2O2的利用率较低,同时产生大量的铁泥,造成二次污染。从笔者的角度来看,未来Fenton法和类Fenton法氧化技术的研究应重点关注Fe2+的固定技术及其循环利用。   2、光催化氧化法   光催化氧化法是以一定量的半导体(如金属氧化物TiO2、ZnO、CeO2、WO3、SnO2,金属硫化物ZnS、CdS,Al和Fe的改性硅酸盐等)为催化剂,在光照条件下,使半导体价带上的电子(e-)被激发跃迁到导带上,在价带上产生强得电子能力的空穴(h+),进而形成光生电子和空穴。空穴将半导体表面吸附的OH和H2O转化成·OH,而被激发的电子(e-)与O2反应生成超氧离子(·O2-),最终实现有机物氧化分解。以上两种途径都是通过强氧化作用对有机污染物进行降解。   近年来,TiO2光催化氧化技术在降解水中的难降解有机污染物时有明显的优势。总体来看,该技术反应条件温和、二次污染小、能耗低。但就目前而言,光催化氧化技术要想实现真正意义上的工业化应用,还有较长的一段路要走,比如如何提高对太阳光的利用率以及催化剂的光催化氧化效率等一系列问题。   3、臭氧氧化法   臭氧氧化法对有机污染物的降解主要依靠O3的直接氧化作用及其在水溶液中产生的·OH的间接氧化作用,将复杂的有机物降解为简单的小分子无机物、二氧化碳和水。臭氧的直接氧化反应较为缓慢且具有较强的选择性,反应速率在1~100M-1s-1。有研究发现,O3对有机物结构中的双键具有很好的氧化选择性。在实际应用中,O3对含不饱和脂肪烃和芳香烃类的PPCPs降解效果较好。O3的间接氧化反应通常发生在O3达到饱和状态时,与水反应生成具有强氧化性的·OH,·OH的氧化没有选择性且速率较快,因此可以快速无选择性地降解水中绝大多数有机污染物。目前,臭氧氧化技术多应用于给水以及医疗废水消毒环节,大型污水处理项目应用较少。   4、湿式氧化法   湿式氧化法是指在高温(125~320℃)和高压(0.5~10.0MPa)下利用氧气或空气(或其他氧化剂如臭氧、双氧水等)氧化水中的有机物及其他还原性物质,使之生成CO2和H2O的一种处理方法。与传统的生物处理方法相比,湿式氧化法高效节能、无二次污染。据统计,目前在欧洲大约有90处工程实例,分别用于处理石油、化工和制药等行业的工业废水和城市污水厂污泥等。   1958年,湿式氧化法被美国人首次用于处理造纸黑液。与常规的处理技术相比,该方法可以无选择且高效地氧化高浓度有机废水,反应时间短,且不产生二次污染。但是该技术的缺点也较为明显,由于该技术需要高温高压条件,对设备的要求较高,前期设备投入较大,应用推广受到限制。   5、超临界水氧化法   水的临界温度是374.3℃,临界压力是22.05MPa,超过该温度及压力就是超临界区。1982年Modell提出,改进湿式氧化法,利用超临界水作为介质氧化有机物。该方法的液相介质为水,氧化剂为空气中的氧,反应条件为高温高压。超临界水是有机污染物和氧的良好溶剂,有机污染物能够在富含氧的超临界水中被快速降解,通常数秒内就能被完全分解为CO2和H2O。   近年来,欧美日发达国家均已建成超临界水氧化的小型工业化设备,且成功应用于污水和污泥的处理处置环节。相较于前者,目前该工艺在我国仍停留在实验室阶段,尚未具备大规模工业化应用的能力。在此之前,还需解决盐沉淀、腐蚀及基础数据缺乏等难题。   6、结语   高级氧化技术具有氧化能力强、反应速度快、处理彻底、无二次污染和适用范围广等特点。多项氧化技术的优化组合模式是该技术应用于水处理的发展方向。如何更高效、绿色和经济地利用各种氧化技术的协同效应,必将成为今后该领域的研究热点之一。   目前,高级氧化技术不成熟的问题有:首先,需要从理论上明确高级氧化作用机理以及协同作用机理,充分发挥各技术间的协同作用;其次,在进行工程应用时,要开发针对难降解物系和实际多组分物系的应用场景;最后,高级氧化技术应用于废水处理还存在一些问题,例如成本较高、对反应体系要求敏感等。因此,应通过模型模拟优化反应工艺参数和改进反应器结构,进一步提高其降解难降解有机物的效率,使其在水治理中得到更广泛的应用。(来源:中国污水处理工程网)    
重金属废水处理反渗透工艺
$info.title
    众所周知,工业生产的废水中含有较多的铬、镍、锌、铜等重金属,这些重金属废水是没有办法进行分解和破坏的,唯一的解决办法就是将其转移到其他位置或转变成其他物化状态,因此,重金属废水处理对于人们的生活和生产来说都是一个较大的难题。       反渗透技术是目前应用较为广泛的一种污水处理技术,由于反渗透膜的孔径限制和在渗透压的作用下,将重金属离子和溶剂分离开。反渗透技术可以有效去除废水中溶解的各种盐类、胶体、微生物等物质,并且去除率能够控制在97%以上。反渗透膜技应用在重金属废水处理中,一方面可以有效的去除废水中的重金属,达到保护生态环境的目的,另一方面,还可以通过该技术对金属离子进行回收和再利用,有效降低了重金属离子的流失率。此外,反渗透技术还具备能耗较小、体积小、无需借助其他添加剂、运行费用较小、操作可控性强、污染性小、适用性强等优点。       1、反渗透技术的原理       现阶段,对于废水的处理方法有很多种,总的来说可以分为化学方法、物理方法、生物质法三种。由于重金属废水中含有较多游离态的重金属离子,再加上这些重金属离子的化学成分一般都较复杂,因此,反渗透法是一种高效、高质且应用较多的用于重金属废水处理方法。       反渗透技术在外界作用力将废水中的溶剂穿过半透膜进入到另一侧,而金属离子无法穿过半透膜的处理方法。该技术的实施需要满足以下两个条件:第一,外界作用力必须高于废水中的渗透压;第二,半透膜应同时具备透水性较好和选择性较多的条件,且其表面微孔的直径小于1nm,只有这样才能除去废水中的离子。       渗透截留机理是反渗透技术的依据,实现对金属离子的筛分和排斥。因此,利用反渗透技术处理含有重金属的废水时,需要考虑各个离子的价态,并且不用添加其他药剂和辅助技术,相较于其他的废水处理技术设备消耗较低且效率更高。       2、反渗透技术在重金属废水处理中的一些应用       2.1 在电镀废水处理中的应用       工业产生的电镀废水和金属漂洗水中含有大量的重金属离子,如铬、铅、镍等,除此之外还包含较多的氰化物和氯化物。反渗透污水处理技术首先应用在电镀水上,在处理电镀水时,采用的是局部渗透或是脱盐法,从而达到回收废水中游离的金属离子的目的。在进行电镀镍时,产生的镍废水中将会包含很多镍离子,而镍对于各种生物都有着极大的危害,因此,有必要处理电镀水中含有的镍离子。反渗透技术应用与电镀水处理已经发展的较为成熟,由于镍具有较高的经济效益,在处理电铬水时,一般结合纳滤工艺来进行回收镍。       2.2 在其他重金属废水处理中的应用       重金属废水除了电镀水之外,还包括冶炼废水、采矿废水及化工生产废水等。这些重金属废水主要含有较多多的金属铜、铅、镍、铬、铝等离子。通过对重金属废水进行处理,不仅可以降低对生态环境的污染,还可以对重金属进行回收与利用,增加企业的社会效益与经济效益。相关数据表明,反渗透技术在重金属废水处理中有着较突出的优势,能够有效去除废水中95.89%以上的重金属离子。因此,反渗透技术对于重金属废水的处理效果是非常优秀的。       3、在应用反渗透技术处理重金属废水需要注意的问题       3.1 对重金属废水进行预处理       在选择反渗透技术进行重金属废水处理时,预处理技术能够有效的延长渗透膜的使用寿命,减少渗透膜更换的频率而降低生产成本。反渗透技术处理重金属废水时,还要看水质是否满足技术要求,避免渗透膜在处理过程中受到污染,提高反渗透技术对废水处理的效果。总而言之,反渗透技术应用于重金属废水处理时,严格做好预处理措施,确保水质达到标准,从而有效提升重金属废水处理的整体效率。       3.2 科学、合理的选择反渗透膜       在重金属废水处理过程中选择技术手段时,一方面需要考虑废水处理的效率与效果,另一方面还要考虑经济成本。利用反渗透技术处理重金属废水效果的关键是反渗透膜的选择,市场上出现了很多类型的反渗透膜,其对重金属的处理能力和产水量等性能方面存在着一定差异。由于废水中的杂质的种类和浓度的不同,在利用反渗透技术处理时要结合其pH值、离子价态等性质,科学合理的选择渗透膜的种类。现阶段,大部分膜相关的企业都设计了相关的软件结合待处理水质选择膜的类型、渗透率等,并且可以科学评估设计方案的准确性、高效性等。       3.3 规范设置工艺操作参数       如上所述,反渗透技术处理重金属废水时,要结合水质特点合理设置工艺参数,以提升处理后的出水水质。反渗透装置操作需要设置的参数主要包括进水水质的pH值、温度、压力等。以卷式反渗透膜处理含有Cu2+的漂洗水为例,发现膜通量会随着膜压降和温度的提高而提高;当温度恒定时,溶液的浓度将随膜压降的提高而减小。同时,不同种类的膜对pH的要求也不一样,一般反渗透膜对金属离子的截留率会随着pH值得降低而下降,因此,pH值在4~7时得效果是最好得。随着膜技术得不断发展,反渗透膜的可用pH范围在不断增加,一般pH使用下限为2。       3.4 定期对膜进行清洗       反渗透装置在运行一段时间之后,在膜的表面将会随着时间的变化而沉积泥垢、金属等各种污染物,沉积在膜表面的物质将会对反渗透装置的处理性能产生不利影响。为了维持膜的结构与性能,应定期对膜进行维护和维修,如消毒和清理等。在进行化学清理时,需要参考膜的材质与污染物的类型选择相应的清洗物和清洗方式,在进行清洗时要注意冲洗的方式和力度,在尽可能地降低对膜地破坏的同时降低膜结垢,通过各方面的有效控制来延长膜的使用寿命、提升出水水质、提高产水量。       4、结束语       综上所述,在利用反渗透技术对重金属废水进行处理时,应结合多个方面达到去除大部粉金属离子的处理结果。反渗透膜技术的广泛应用不仅有助于降低重金属离子对于人和动物等生态结构的破坏,还可以实现对金属离子的回收再利用,从而提高资源的利用率,创造出更大的经济价值、社会价值、环境价值、生态价值。我相信,随着科学技术的不断进步,反渗透技术也将会取得较大的发展,这有利于重金属废水处理实现更高效、高质的效果。(来源:中国污水处理工程网)    
针对难生化高浓度有机废水处理方法有哪些?
$info.title
   针对难生化的高浓度有机废水应该采用预处理+生化处理的方法,而且关键在生化前的预处理上,通过预处理降低废水中对生化有抑制作用的物质,把大分子的有机物分解成小分子有机物,提高废水的可生化性。      常见的预处理方法有: 1、高级氧化(臭氧氧化、芬顿试剂氧化、双氧水氧化等),将废水中难降解有机物直接氧化降解; 2、微电解工艺(如铁碳微电解等),利用微电解产生的电子,将有机物的一些基团打开,分解成小分子物质,有利于后续的生化处理; 3、蒸馏工艺,将高浓度的含盐类母液等进行蒸馏,减少废水中的对生化细菌有抑制作用的无机盐类等。 4、水解酸化,利用生物的厌氧发酵的前面两个阶段,将废水中的有机物水解酸化成小分子物质,有利用后续的生化降解。      预处理后的生化系统有: 1、厌氧工艺(UASB、IC、普通厌氧工艺及其演变工艺等) 2、A/O(兼氧、好氧工艺)等。      美纳环保为您提供最优的解决方案,欢迎咨询!    
上一页
1
2
...
125